JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 39
  • Score
    100M100P100Q64368F
  • License Apache-2.0

Superfast lightweight full text search engine.

Package Exports

  • bulksearch

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (bulksearch) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

BulkSearch

Superfast lightweight full text search engine.

Searching full text with BulkSearch is up to 1,000 times faster than ElasticSearch implementation.

Benchmark Comparison: https://jsperf.com/bulksearch

All Features:

  • Partial Words
  • Multiple Words
  • Flexible Word Order
  • Phonetic Search
  • Limit Results
  • Caching
  • Asynchronous Mode
  • Custom Matchers
  • Custom Encoders

Plugins In Progress:

  • Common Phonetic Encoders:
    • Soundex
    • Cologne
    • Metaphone
    • Caverphone
    • Levinshtein
    • Hamming
    • Matchrating
    • NGram
  • Dedicated Memory (Worker)

Installation

Node.js
npm install bulksearch

In your code include as follows:

var BulkSearch = require("BulkSearch");
HTML / Javascript
<html>
<head>
    <script src="https://cdn.rawgit.com/nextapps-de/bulksearch/dist/bulksearch.min.js"></script>
</head>
...

AMD

var BulkSearch = require("BulkSearch");

Usage (API)

Create a new index

var index = new BulkSearch();

alternatively you can also use:

var index = BulkSearch.create();
Create a new index with custom options

BulkSearch.create(OPTIONS)

var index = new BulkSearch({

    // default values:

    type: "integer",
    encode: "icase",
    boolean: "and",
    strict: false,
    ordered: false,
    multi: false,
    cache: false
});

Add item to the index

Index.add_(ID, TEXT)

index.add(10025, "John Doe");

Note: The data type of passed IDs has to be specified on creation. It is recommended to uses to most lowest possible data range here, e.g. use "short" when IDs are not higher than 65,535.

ID Type Range of Values Memory of Index each ~ 100.000 Words
Byte 0 - 255 683 kb
Short 0 - 65,535 1.3 Mb
Integer 0 - 4,294,967,295 2,7 Mb
Float 0 - * (16 digits) 5,3 Mb
String (unlimited) 1,3 Mb * char count of IDs

Search items

Index.search(TEXT, LIMIT, CALLBACK)

index.search("John");
limit the result
index.search("John", 10);
perform queries asynchronously
index.search("John", function(result){
    
    // array of results
});

Update item to the index

Index.update(ID, TEXT)

index.update(10025, "Road Runner");

Remove item to the index

Index.remove(ID)

index.remove(10025);

Optimize/Cleanup the index

Index.cleanup()

index.cleanup();

Destroy the index

Index.destroy()

index.destroy();

Initialize the index

Index.init(OPTIONS)

index.init();

Add custom matcher

Index.addMatcher(KEY_VALUE_PAIRS)

index.addMatcher({

    'ä': 'a', // replaces all 'ä' to 'a'
    'ö': 'o',
    'Ü': 'u'
});

Add custom encoder

var index = new BulkSearch({

    encode: function(str){
    
        // do something with str ...
        
        return str;
    }
});

Get info

Index.info()

index.info();

Returns information about the index, e.g.:

{
    "bytes": 3600356288,
    "chunks": 9,
    "fragmentation": 0,
    "fragments": 0,
    "id": 0,
    "length": 7798,
    "matchers": 0,
    "size": 10000,
    "status": false
}

Note: When the fragmentation value is about 50% or higher, your should consider using cleanup() to free all fragmented available memory.

Optimize / Cleanup index

Index.cleanup()

index.cleanup();

Calculate RAM

The required RAM per instance can be calculated as follow:

BYTES = CONTENT_CHAR_COUNT * (BYTES_OF_ID + 2)

Character count may be less related to the phonetic settings (e.g. when using soundex).


Author BulkSearch: Thomas Wilkerling
License: Apache 2.0 License