JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 33
  • Score
    100M100P100Q59132F
  • License Apache-2.0

Superfast lightweight full text search engine.

Package Exports

  • bulksearch

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (bulksearch) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

BulkSearch

Superfast lightweight full text search engine.

Searching full text with BulkSearch is up to 1,000 times faster than ElasticSearch implementation.

Benchmark Comparison: https://jsperf.com/bulksearch

All Features:

  • Partial Words
  • Multiple Words
  • Flexible Word Order
  • Phonetic Search
  • Limit Results
  • Caching
  • Asynchronous Mode
  • Custom Matchers
  • Custom Encoders

Plugins In Progress:

  • Common Phonetic Encoders:
    • Soundex
    • Cologne
    • Metaphone
    • Caverphone
    • Levinshtein
    • Hamming
    • Matchrating
    • NGram
  • Dedicated Memory (Worker)

Installation

Node.js
npm install bulksearch

In your code include as follows:

var BulkSearch = require("BulkSearch");
HTML / Javascript
<html>
<head>
    <script src="https://cdn.rawgit.com/nextapps-de/bulksearch/master/bulksearch.min.js"></script>
</head>
...

AMD

var BulkSearch = require("BulkSearch");

Usage (API)

Create a new index

var index = new BulkSearch();

alternatively you can also use:

var index = BulkSearch.create();
Create a new index with custom options

BulkSearch.create(options)

var index = new BulkSearch({

    // default values:

    type: "integer",
    encode: "icase",
    boolean: "and",
    strict: false,
    ordered: false,
    multi: false,
    cache: false
});

Read more: Phonetic Search, Phonetic Comparison, Improve Memory Usage

Add items to an index

Index.add_(id, string)

index.add(10025, "John Doe");

Search items

Index.search(string, limit, callback)

index.search("John");
Limit the result
index.search("John", 10);
Perform queries asynchronously
index.search("John", function(result){
    
    // array of results
});

Update item to the index

Index.update(id, string)

index.update(10025, "Road Runner");

Remove item to the index

Index.remove(id)

index.remove(10025);

Destroy the index

index.destroy();

Initialize the index

Index.init(options)

index.init();

Add custom matcher

Index.addMatcher(KEY_VALUE_PAIRS)

index.addMatcher({

    'ä': 'a', // replaces all 'ä' to 'a'
    'ö': 'o',
    'Ü': 'u'
});

Add custom encoder

var index = new BulkSearch({

    encode: function(str){
    
        // do something with str ...
        
        return str;
    }
});

Get info

index.info();

Returns information about the index, e.g.:

{
    "bytes": 3600356288,
    "chunks": 9,
    "fragmentation": 0,
    "fragments": 0,
    "id": 0,
    "length": 7798,
    "matchers": 0,
    "size": 10000,
    "status": false
}

Note: When the fragmentation value is about 50% or higher, your should consider using cleanup() to free all fragmented available memory.

Optimize / Cleanup index

index.cleanup();

Phonetic Encoding

Option Description Example
false Turn off encoding Reference: "Björn-Phillipp Mayer"
Matches: "Phil"
icase Case in-sensitive encoding Reference: "Björn-Phillipp Mayer"
Matches: "phil"
simple Phonetic normalizations Reference: "Björn-Phillipp Mayer"
Matches: "bjoern fillip"
advanced Phonetic normalizations + transformations Reference: "Björn-Phillipp Mayer"
Matches: "filip meier"

Compare Phonetic Search Results

Reference String: "Björn-Phillipp Mayer"

Query ElasticSearch BulkSearch (iCase) BulkSearch (Simple) BulkSearch (Adv.)
björn yes yes yes yes
björ no yes yes yes
bjorn no no yes yes
bjoern no no no yes
philipp no no no yes
filip no no no yes
björnphillip no no yes yes
meier no no no yes
björn meier no no no yes
meier filip no no no yes

Improve Memory Usage

Note: The data type of passed IDs has to be specified on creation. It is recommended to uses to most lowest possible data range here, e.g. use "short" when IDs are not higher than 65,535.

ID Type Range of Values Memory Usage of every ~ 100,000 Words
Byte 0 - 255 683 kb + 1.3 Mb
Short 0 - 65,535 1.3 Mb + 1.3 Mb
Integer 0 - 4,294,967,295 2.7 Mb + 1.3 Mb
Float 0 - * (16 digits) 5.3 Mb + 1.3 Mb
String * (unlimited) 1.3 Mb * char count of IDs + 1.3 Mb

The required RAM per instance can be calculated as follow:

BYTES = CONTENT_CHAR_COUNT * (BYTES_OF_ID + 2)

Character count may be less related to the phonetic settings (e.g. when using soundex).


Author BulkSearch: Thomas Wilkerling
License: Apache 2.0 License