JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 276
  • Score
    100M100P100Q92359F
  • License MIT

Partial least squares library

Package Exports

  • ml-pls

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-pls) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Partial Least Squares (PLS)

PLS regression algorithm based on the Yi Cao Matlab implementation:

Partial Least-Squares and Discriminant Analysis

installation

$ npm install ml-pls

Methods

new PLS()

Constructor that takes no arguments.

Example

var pls = new PLS();

fit(trainingSet, predictions)

Fit the PLS model to the given training set and predictions

Arguments

  • trainingSet - A matrix of the training set.
  • predictions - A matrix of predictions with the same size of rows of the trainingSet.

Example

var training = [[0.1, 0.02], [0.25, 1.01] ,[0.95, 0.01], [1.01, 0.96]];
var predicted = [[1, 0], [1, 0], [1, 0], [0, 1]];

pls.fit(trainingSet, predictions);

predict(dataset)

Predict the values of the dataset.

Arguments

  • dataset - A matrix that contains the dataset.

Example

var dataset = [[0, 0], [0, 1], [1, 0], [1, 1]];

var ans = pls.predict(dataset);

getExplainedVariance()

Returns the explained variance on training

export()

Exports the actual PLS to an Javascript Object.

load(model)

Returns a new PLS with the given model.

Arguments

  • model - Javascript Object generated from export() function.

Authors

License

MIT