JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 207
  • Score
    100M100P100Q93060F
  • License MIT

Partial least squares library

Package Exports

  • ml-pls

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-pls) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Partial Least Squares (PLS)

NPM version build status David deps npm download

PLS regression algorithm based on the Yi Cao Matlab implementation:

Partial Least-Squares and Discriminant Analysis

installation

$ npm install ml-pls

Methods

new PLS(X, Y)

pls.train(options)

Example

var X = [[0.1, 0.02], [0.25, 1.01] ,[0.95, 0.01], [1.01, 0.96]];
var Y = [[1, 0], [1, 0], [1, 0], [0, 1]];
var options = {
  latentVectors: 10,
  tolerance: 1e-4
};

var pls = new PLS(X, Y);
pls.train(options);

predict(dataset)

Predict the values of the dataset.

Arguments

  • dataset - A matrix that contains the dataset.

Example

var dataset = [[0, 0], [0, 1], [1, 0], [1, 1]];

var ans = pls.predict(dataset);

getExplainedVariance()

Returns the explained variance on training

License

MIT