JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 30348
  • Score
    100M100P100Q150272F
  • License MIT

Regression algorithms

Package Exports

  • ml-regression

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-regression) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

ml-regression

NPM version build status Test coverage npm download

Regression algorithms

Installation

$ npm install ml-regression

Examples

Simple linear regression

const SLR = require('ml-regression').SLR;
let inputs = [80, 60, 10, 20, 30];
let outputs = [20, 40, 30, 50, 60];

let regression = new SLR(inputs, outputs);
regression.toString(3) === 'f(x) = - 0.265 * x + 50.6';

Check this cool blog post for a detailed example: https://hackernoon.com/machine-learning-with-javascript-part-1-9b97f3ed4fe5

Polynomial regression

const PolynomialRegression = require('ml-regression').NLR.PolynomialRegression;
const x = [50,50,50,70,70,70,80,80,80,90,90,90,100,100,100];
const y = [3.3,2.8,2.9,2.3,2.6,2.1,2.5,2.9,2.4,3.0,3.1,2.8,3.3,3.5,3.0];
const degree = 5; // setup the maximum degree of the polynomial
const regression = new PolynomialRegression(x, y, degree);
console.log(regression.predict(80)); // Apply the model to some x value. Prints 2.547.
console.log(regression.coefficients); // Prints the coefficients in increasing order of power (from 0 to degree).
console.log(regression.toString(3)); // Prints a human-readable version of the function.
console.log(regression.toLaTeX());

License

MIT